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Abstract
We discuss different quantifiers of stochastic resonance (SR) and how far
they are mathematically related with each other. Specifically, we address
bona fide SR in terms of the areas of the hysteresis loops and of the first
peaks in the residence time distributions. We demonstrate a surprisingly good
agreement of these two SR quantifiers experimentally for colloidal particles in
periodically modulated laser traps. A simple theoretical model is established,
which reproduces the experimental observations very well.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Stochastic resonance (SR) refers to the enhanced sensitivity of a nonlinear system to a weak
periodic forcing in the presence of an optimal amount of noise [1]. Such a mechanism may
play a role in various natural systems like neurophysiology, ice ages, or geomagnetism, and
may also be of interest in the context of optimizing signal detectors of various types. Since
the phenomenon is very broad, there is still no general agreement about the precise conditions
for its occurrence, its physical meaning, and even its defining characteristic signature; see
e.g. [2–8]. A considerable variety of different quantifiers for SR has been introduced in the
course of time, motivated by the same general ideas, but leading to different quantitative
conclusions regarding the occurrence of SR in a given physical system.

At the focus of our present work are SR effects in colloidal suspensions under the action
of periodically modulated laser traps. In section 2 we introduce the general framework and
derive some relations between different SR quantifiers in the linear response regime, whose
implications are then discussed in section 3. In section 4 we put forward a very simple
theoretical model for the approximate description of the experiments in section 5. The
predictions of this model are then compared with experimental observations,yielding very good
quantitative agreement. These measurements together with the description of the experimental
set-up and the justification of the theoretical model are the content of section 5. Since the
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noise intensity cannot be changed in the experiment, we focus on optimal signal enhancement
phenomena upon variation of the driving frequency—so called ‘bona fide SR’. Two prominent
quantifiers of SR in such a case are based on residence time distributions [2–4, 9, 10] and
hysteresis loop areas [11–19], as discussed in detail in sections 2–5. Our summary and
conclusions are contained in section 6.

2. Linear response theory

In the following we systematically review relations between three prominent quantifiers of
SR, namely the signal-to-noise ratio (SNR), the spectral power amplification (SPA), and the
hysteresis loops area (HLA), in the linear response regime of weak periodic driving. Most
of these relations are well known, but some of them we have not see before in the literature.
In this section we focus on the general framework and the mathematics, while the physical
discussion is postponed to the subsequent section 3.

2.1. Framework

We consider an arbitrary system whose equilibrium probability density is of Boltzmann form

Weq(φ) = Z−1 exp{−H (φ)/kBT }, (1)

for a suitably defined Hamiltonian H (φ) on a phase space with elements φ.
Next we assume that the system is subject to a weak, time-dependent perturbation,

amounting to a Hamiltonian of the form H (φ) − x(φ) f (t). In the context of SR, x(φ) is
typically one of the system’s spatial coordinates and f (t) an external force. In fact, by means
of a canonical transformation one can usually reduce the problem to this special case.

The time evolution of the perturbed system is required to be Markovian, i.e. its future
only depends on the present, not on the past. Furthermore, we take for granted that the
long time limit of the probability density W (φ, t) is unique, i.e. independent of the initial
condition, for any given perturbation f (t) of the system. It follows that this long time limit
is the Boltzmann distribution (1) in the absence of driving, and that for a periodic driving
f (t) the probability density will be asymptotically periodic as well. Moreover, it follows that
the dynamics is mixing in the sense that the ensemble averaged autocorrelation of the system
coordinate satisfies

〈x(t)x(t + s)〉 → 〈x(t)〉〈x(t + s)〉 for s → ∞, (2)

where x(t) := x(φ(t)).
We remark that the above assumptions about the dynamics are rather weak and thus our

subsequent considerations apply to a very large class of different systems.
All in all, we may say that two different ‘input forces’ are acting simultaneously on the

system coordinate x , namely thermal fluctuations ξ(t) and the external driving force f (t). In
this sense, the ‘input signal’ of the system is given by

xin(t) := ξ(t) + f (t), (3)

where ξ(t) must be a white noise (uncorrelated in time) due to our above assumption of a
Markovian dynamics.

The central question in SR is how the system coordinate x(t), considered as the ‘output’
of the nonlinear, noisy dynamics, responds to this input, in particular the ‘sensitivity’ of this
response in the case of a weak, periodic forcing f (t).
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2.2. Fluctuation–dissipation theorem

The response of the ensemble averaged coordinate to the weak external perturbation f (t) can
be written by means of a functional expansion in the form

〈x(t)〉 = 〈x〉eq +
∫ ∞

0
dt ′ R(t ′) f (t − t ′) + O( f 2(t)) (4)

where 〈· · ·〉eq means averaging with respect to the equilibrium probability density (1). The
linear response function R(t ′) describes the effect of the driving field f (t) at the previous
moment of time t − t ′ on the system’s average coordinate at the present time t . Because of
causality, the driving field at some future time moment t + t ′ > t cannot have any effect on the
system’s properties at time t , thus R(t ′) = 0 for t ′ < 0.

A central point of the functional expansion (4) is the fact that the linear response function
R(t) in general depends on everything else, but not on the perturbation f (t). In particular,
f (t) need not be periodic in time. In order to evaluate R(t), we thus can focus on the evolution
of the system’s average coordinate under the action of a suitably chosen, specific perturbation
f (t), namely a step function

fstep(t) := ε�(−t) (5)

of small amplitude ε, where �(t) := ∫ t
−∞ dt ′δ (t ′) is the Heaviside step function. In other

words, an external bias ε is switched on in the infinitely remote past t = −∞ and switched
off at time t = 0. Thus the system is allowed to equilibrate with the bias for all finite times
t < 0, i.e. the probability density at times t � 0 is Boltzmannian:

Wε(φ) = exp[−(H (φ) − εx(φ))/kBT ]∫
dφ′ exp[−(H (φ′) − εx(φ′))/kBT ]

= Weq(φ)

(
1 + ε

x(φ) − 〈x〉eq

kBT

)
+ O(ε2),

(6)

where the argument t in 〈x〉eq is omitted since this average is time independent.
Next we introduce the conditional probability P(φ, t|φ0, t0) to find the system in the state

φ at the moment t � 0, provided that the system’s state at time t0 < t was φ0. Due to our
assumption that the dynamics is Markovian, P(φ, t|φ0, t0) fully determines the time evolution
according to

W (φ, t) =
∫

dφ0 P(φ, t|φ0, t0)W (φ0, t0). (7)

Since the bias ε is switched off at time t = 0, we can conclude that∫
dφ0 P(φ, t|φ0, 0)Weq(φ0) = Weq(φ) (8)

for all t � 0. Hence the average 〈x(t)〉 evolves according to

〈x(t)〉step =
∫

dφ x(φ)W (φ, t) =
∫

dφ x(φ)

∫
dφ0 P(φ, t|φ0, 0)W (φ0, 0)

=
∫

dφ x(φ)

∫
dφ0 P(φ, t|φ0, 0)Weq(φ0)

(
1 + ε

x(φ0) − 〈x(φ)〉eq

kBT

)
+ O(ε2)

= 〈x〉eq + ε
〈x(0)x(t)〉eq − 〈x〉2

eq

kBT
+ O(ε2), (9)

where 〈x(0) x(t)〉eq is the coordinate autocorrelation function in the absence of driving. On
the other hand, for our step function (5) the average 〈x(t)〉step at time t is given according to (4)
by

〈x(t)〉step = 〈x〉eq + ε

∫ ∞

t
dt ′ R(t ′) + O(ε2), (10)
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so that the linear response function is related to the coordinate autocorrelation function as

R(t) = −1

ε

d〈x(t)〉step

dt
= − 1

kBT

d〈x(0) x(t)〉eq

dt
. (11)

This relation is known as the fluctuation–dissipation theorem [20, 21].

2.3. Susceptibility

Introducing the susceptibility

χ(ω) :=
∫ ∞

0
dt R(t)e−iωt (12)

into the fluctuation–dissipation theorem (11), integrating by parts, and considering (2) yields
for the imaginary part of the susceptibility the relation

Im χ(ω) = − ω

kBT

∫ ∞

0
dt 〈x(0)x(t)〉eq cos(ωt). (13)

The real part of the susceptibility can be found from the imaginary part, and vice versa, using
the Kramers–Kronig relations [22]:

Re χ(ω) = − 1

π
P

∫ ∞

−∞
dω′ Im χ(ω′)

ω′ − ω
, (14)

Im χ(ω) = 1

π
P

∫ ∞

−∞
dω′ Re χ(ω′)

ω′ − ω
(15)

where the symbol ‘P’ indicates that the integrals are evaluated in the sense of the principal
value. Moreover, for ω = 0 we can infer from (2), (11), and (12) that

χ(0) = 〈x2〉eq − 〈x〉2
eq

kBT
. (16)

2.4. SR quantifiers

For an arbitrary periodic driving f (t) of frequency 	 with Fourier decomposition

f (t) =
∞∑

n=1

An cos(n	t + ϕn) (17)

the driven average coordinate from (4) evolves according to

〈x(t)〉 = 〈x〉eq + Re
∞∑

n=1

χ(n	)Anei(n	t+ϕn) + O( f 2(t)). (18)

Within linear response (weak driving), this yields

〈x(t)〉 = 〈x〉eq +
∞∑

n=1

|χ(n	)|An cos(n	t + ϕn + δn), (19)

with

|χ(n	)| =
√

[Re χ(n	)]2 + [Im χ(n	)]2, (20)

tan δn = Im χ(n	)/ Re χ(n	). (21)

The spectral density of coordinate fluctuations in the absence of driving is defined as

Seq(ω) :=
∫ ∞

−∞
dt 〈x(0)x(t)〉eqe−iωt . (22)
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Taking into account that the equilibrium correlation function is an even function of time,
〈x(0)x(−t)〉eq = 〈x(0)x(t)〉eq, we can infer from (13) and (22) the following relation between
spectral density and susceptibility:

Seq(ω) = −2kBT
Im χ(ω)

ω
. (23)

By definition, the spectral power amplification (SPA) is given by the ratio of the power of
the driven oscillations in (19) to that of the driving signal in (17) at the driving frequency 	,
i.e.

SPA := |χ(	)|2. (24)

Moreover, on the f (t)–〈x(t)〉 plane, the hysteresis loop according to (19) and (17) roughly
takes the form of an ellipse whose hysteresis loop area

HLA :=
∫ 2π/	

t=0
d f (t) 〈x(t)〉 (25)

is given by

HLA = π

∞∑
n=1

n A2
n|χ(n	)| sin δn = π

∞∑
n=1

n A2
n Im χ(n	). (26)

Note that the area of the hysteresis loop has the physical meaning of work produced by the
system per period; this work is negative since δn ∈ (−π, 0) in (19) and (21).

Our final task is to express the signal-to-noise ratio (SNR) in terms of the susceptibility. Let
us first focus on the correlation function 〈x(t)x(t + s)〉 in the presence of driving. In contrast
to the case of the undriven system, it now depends explicitly on the time t . Therefore, we
introduce the quasistationary correlation function by averaging with respect to this argument:

C(s) := 	

2π

∫ 2π/	

0
dt 〈x(t)x(t + s)〉. (27)

From (2) and (19) it follows that C(s) − 〈x〉2
eq converges for large s towards the periodic

function

Ccoh(s) = 1
2

∞∑
n=1

|χ(n	)|2 A2
n cos(n	s), (28)

up to corrections of the order A4. Hence, one can rewrite [23] the correlation function as a
sum of a coherent and an incoherent contribution

C(s) = Cinc(s) + Ccoh(s). (29)

By definition, the incoherent part approaches 〈x〉2
eq for s → ∞. Its leading order behaviour,

i.e. neglecting corrections of the order A2, follows by letting A → 0, yielding

Cinc(s) = 〈x(0)x(s)〉eq. (30)

Correspondingly, the power spectrum of the driven system

S(ω) :=
∫ ∞

−∞
ds C(s)e−iωs (31)

can be rewritten by means of (22), (28)–(31) as

S(ω) = Seq(ω) + π

∞∑
n=1

|χ(n	)|2 A2
n[δ(ω − n	) + δ(ω + n	)]/2. (32)
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By definition [1], the signal-to-noise ratio (SNR) is given by

SNR := limδω→0
∫ 	+δω

	−δω
dω S(ω)

Seq(	)
. (33)

Taking into account (23) and (32) we finally obtain

SNR = −π	|χ(	)|2 A2
1

4kBT Im χ(	)
. (34)

3. Discussion of various SR quantifiers

The upshot of the preceding section is the following relation between signal-to-noise ratio
(SNR), hysteresis loop area (HLA), and spectral power amplification (SPA) for a weak, purely
harmonic driving

f (t) = A cos(	t) (35)

of frequency 	 and (small) amplitude A (linear response regime):

SNR × HLA = −SPA
π2 A4	

4kBT
(36)

as can be inferred from (24), (26) and (34). Hence, two of these three common quantifiers
of SR determine the third one. We also recall that the HLA represents work produced by the
system per period and is therefore negative. This relation is valid for a very large class of
different systems as specified in section 2.1.

Often, a non-monotonic, resonance-type behaviour of one of those three quantities is
considered as the defining characteristic signature of SR. In many cases, one finds that either
all three of them exhibit such a maximum or all three of them are monotonic functions of the
temperature. However, in general it is quite plausible and indeed confirmed in typical examples
that the maximizing temperatures are different in the three cases. Moreover, there may also be
cases where some of the three quantities behave monotonically and some non-monotonically
for the same physical system.

Beyond the linear response regime, no generalization of the relation (36) between
SNR, SPA, and HLA is known, but their generic quantitative and possibly even qualitative
disagreement remains the same.

If the driving frequency 	 is much smaller than any other characteristic frequency of the
system, the SPA can be readily evaluated in terms of the first two moments 〈x〉eq, 〈x2〉eq of the
unperturbed system according to (1), (16) and (24). For suitably chosen system Hamiltonians
H (φ) one thus recovers an SR-type maximum of SPA as a function of temperature, but also
anti-SR-type minima as well as several extrema (multiple SR), and this even in monostable
systems without any clear-cut ‘threshold’ [8].

In the context of signal detection and enhancement, an interesting quantity is the so-called
‘gain’, defined as the ratio between the ‘output’ SNR (33) of the system through its coordinate
x , and the corresponding ‘input’ SNR, associated with the total external signal (3), which
acts as a force on the system coordinate x . Since the thermal fluctuations are given by white
(uncorrelated) Gaussian noise ξ(t), one readily finds for the input SNR the result

SNRin = π A2
1/4kBT . (37)

Within linear response, the gain, i.e. the ratio between (34) and (37), is always smaller than
unity as demonstrated in detail in [24]. On the other hand, beyond linear response and suitably
chosen anharmonic driving (17), gains exceeding unity have been exemplified in [25].
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Considered as a function of the driving frequency 	, SNR and SPA exhibit a monotonic
behaviour for typical systems of interest, while HLA still shows a resonance-type non-
monotonicity, referred to as bona fide SR. We remark that considered as functions of 	 each of
the three quantifiers completely fixes the other two thanks to the Kramers–Kronig relations (14)
and (15) in combination with (24), (26) and (34).

A further popular quantifier of SR, sharing the bona fide property with HLA, is residence
time distributions as discussed in more detail in the next section. To our knowledge, no general
relation between this quantity and the three previously discussed SR quantifiers exists in the
literature, nor were we able to derive such a relation.

While each of the above mentioned four SR quantifiers is based on the same qualitative
physical picture and can be motivated by strong arguments, each of them has also its own
shortcomings and unwanted features. E.g. SNR and SPA both lack the bona fide property and
admit SR in monostable systems [8] as well as in any collective system near a critical phase
transition point.

The shortcoming of the residence time distributions is the survival of a bona fide SR peak
even in the absence of any external driving [2]. On the other hand, it is clear that HLA tends
to zero both for asymptotically fast and slow external driving in basically any system, while
assuming a finite value for finite driving frequency. In other words, bona fide SR in terms of
HLA will be observed in basically every system. A possible way out might be to consider not
the work per period, i.e. HLA itself, but rather the power absorbed by the system, i.e. HLA
times driving frequency 	.

4. Theoretical model and predictions

In this section we exemplify bona fide SR and its two quantifiers—based on hysteresis loops
and residence times, respectively—by way of a particularly simple model. The predictions
for these two quantifiers will be shown in the following section 5 to agree quite well with
experimental observations, thus justifying a posteriori our specific choice of the model and
the parameters in this section.

4.1. Model

Our aim is to establish a theoretical model which quantitatively reproduces the experimental
observations (see section 5) reasonably well and otherwise is as simple as possible, i.e. with a
minimal number of fit parameters.

In a first step, we describe the dynamics of a colloidal particle (see section 5.1) in water
as Brownian motion. Owing to the experimental realization, vertical particle fluctuations can
be safely ignored and the motion of the particle is confined to a plane.

Within the plane the particle is subjected to a symmetric double well potential created
by optical tweezers (see section 5.1). Our next assumption is that the problem can further be
reduced to an approximate effectively one-dimensional dynamics in a (possibly renormalized)
symmetric double-well potential in one dimension of the specific form

U(x) = �U [(x/x0)
2 − 1]2 (38)

with two fit parameters, representing the effective potential barrier �U between the two
symmetric potential wells at ±x0. The experimental justification of this approximation will
be provided in section 5.2 together with the estimates

�U = 2.9 kBT, (39)

x0 = 0.8 µm, (40)
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where the ambient temperature of the experiment is

T = 292 K (room temperature). (41)

As detailed in section 5.2, the intensities of the two laser traps are sinusoidally modulated
in counterphase. In our model, the resulting effect on the colloidal particle is approximately
described by a spatially homogeneous and temporally harmonic force (35) with frequency 	

and amplitude A, estimated in section 5.2 as

A = 1.9kBT/x0. (42)

Given the above approximations for the light forces, we make the following ansatz for the
Brownian dynamics of the particle along the x-axis:

ηẋ(t) = −U ′(x(t)) + f (t) + ξ(t), (43)

where η accounts for dissipation effects by Stokes friction and where thermal noise effects
are modelled by unbiased white Gaussian noise ξ(t), correlated according to the fluctuation
dissipation theorem of the second kind [26]

〈ξ(t)ξ(s)〉 = 2ηkBT δ(t − s). (44)

The specific ansatz for friction and noise in (43) and (44) as well as neglecting inertia effects
of the form mẍ(t) (overdamped limit) represents the most widely studied model in the context
of SR [1] and is well established for colloidal particles under the experimental conditions from
section 5.

The only remaining model parameter in (43) is the friction coefficient η. A first estimate
is provided by Stokes formula η = 6πνr , where r is the particle radius and ν the viscosity
of the ambient liquid (pure water). Using r = 0.79 µm (see section 5.2), equation (41), and
ν = 0.0010 N s m−2 (water at room temperature) this yields D = η/kBT � 0.27 µm2 s−1

for the diffusion coefficient D equivalent to η. However, this approximation is only valid in
the absence of hydrodynamic interactions between the particle and the sample wall, which,
however, is not justified at the small particle–wall separations in our case. Hence, we
experimentally determined the average transition time between the two symmetric potential
wells, i.e. in the absence of the periodic driving, and reproduced the experimental finding of
22 s (see section 5.3) by numerically solving the model dynamics (43) and adapting η, yielding
the estimate

D = kBT/η � 0.24 µm2 s−1, (45)

for the diffusion coefficient D equivalent to η, which is indeed somewhat smaller than the
above naive estimate.

4.2. Residence times and hysteresis loops

In order to determine residence times, we introduce the two symmetric thresholds

x± = ±0.6 µm, (46)

one for each potential well. The times between subsequent first crossings of the two thresholds
give rise to the so called residence time distribution P(tres).

In figure 1 numerically determined residence time distributions P(tres) are shown for the
model dynamics (35), (38)–(46) for various values of the driving frequency 	.

The peaks of the residence time distribution P(tres) reflect a kind of synchronization with
the external driving f (t) of period τ = 2π/	, and therefore are approximately located at
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Figure 1. Residence time distributions P(tres) (histograms) and hysteresis loops (parametric
plots of cos(	t) = f (t)/A versus 〈x(t)〉 with t as parameter) for five different driving periods
τ = 2π/	. From top to bottom: τ = 10, 20, 50, 100, 200 s. The residence times have been
obtained by numerical simulations of the Langevin equation (35), (38)–(46) and the averages 〈x(t)〉
by numerical solutions of the equivalent Fokker–Planck equation.

t = (1/2 + n)τ , n = 0, 1, 2, . . .. Accordingly, the area of the first peak of the residence time
distribution,

RES :=
∫ (1/2+α)τ

(1/2−α)τ

dtres P(tres), (47)

has been proposed as a sensible quantifier of bona fide SR [2–4, 9, 10]. In doing so, the
normalization ∫ ∞

0
dtres P(tres) = 1 (48)
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Figure 2. The same numerical data as in figure 1. Filled circles: area under the first peak of
the residence time distribution RES from (47)–(49) versus driving period τ = 2π/	. Open
squares: hysteresis loop area HLA from (25) versus driving period τ = 2π/	, scaled so that RES
(50 s) = HLA (50 s).

is taken for granted and α may be any number in the interval (0, 1/2). Our standard choice in
this paper is

α = 0.2. (49)

Indeed, RES in figure 2 exhibits the predicted resonance-type peak as a function of the driving
period τ .

Also shown in figure 1 are the hysteresis loops of the average coordinate 〈x(t)〉,
parametrically plotted versus the external driving f (t), for the same driving periods τ as
the residence times from figure 1. The corresponding hysteresis loop areas (25) are depicted
in figure 2. The quite remarkable agreement (up to a constant scaling factor) between these
hysteresis loop areas and the area of the first peak of the residence time distribution (47) is
further discussed in section 6.

From the very good quantitative agreement of these theoretical predictions with the
experimental findings that will be demonstrated in the subsequent section 5, we conclude
that our model (35), (38)–(45) indeed describes the experimental reality reasonably well.

5. Experimental system and results

5.1. Experimental set-up

The situation discussed above was realized experimentally with colloidal particles suspended
in water, a system for which the dynamics are well described by Brownian motion. Double-
well potentials were created and modulated using the principle of optical tweezers [27]. In our
experiment we used two acousto-optic deflectors and a laser beam time-shared at a switching
rate of 50 kHz to create multiple optical traps with well defined positions and intensities.
Because this timescale is significantly faster than any relaxation times in our system the
colloidal particles felt quasi-static potentials. Due to the vertical light pressure acting on
the particles, their motion was confined to a plane close to the lower surface of our sample
cell. A colloidal particle fluctuating in a double-well potential was imaged onto a CCD camera.
Images were recorded at a rate of 20 frames s−1 and later analysed to extract particle trajectories.
Figure 3 illustrates the experimental set-up described in more detail in [28].
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Figure 3. Left: schematic picture of our experiment. A laser beam is focused using a microscope
objective to act as optical tweezers. The dashed line indicates the position of the laser beam about
20 µs later. Right: CCD camera image of a particle in a double-well potential.
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Figure 4. (a) Two-dimensional probability distribution of a colloidal particle fluctuating in a
double-well potential. (b) Cross section at y = 0 µm of the potential obtained from the probability
distribution shown in (a) (symbols) and the potential U(x) = 2.9 kBT [(x/0.8 µm)2 −1]2 (cf (38)–
(40)) (line).

5.2. Determination of model parameters

Our experimental results were obtained using silica particles of diameter 2r = (1.57 ±
0.06) µm. Our double-well potential had an inter-well distance of 2x0 = (1.6 ± 0.1) µm
(cf (39)) and a barrier height in the unmodulated case of �U = (2.9 ± 0.3)kBT (cf (40)).
These parameters were determined from the Boltzmann distribution sampled by a particle in
the static double-well potential under the influence of thermal noise at room temperature (41)
as shown in figure 4(a). The symbols in figure 4(b) show a cross section of the resulting
potential U(x, y) along the y-axis (connecting the extrema of the potential). For comparison
we plotted the function U(x) = 2.9kBT [(x/0.8 µm)2 − 1]2 (cf (38)–(40)). In the central
part, the potential is very well described by this function, while deviations occur in the outer
regions. The latter is due to the fact that far from the centre the light distribution, which can
be approximated by the sum of two Gaussians, deviates significantly from the quartic form
assumed in (38). However, it should be emphasized that the particle hopping dynamics, i.e. the
Kramers time, are essentially determined by the potential shape in the vicinity of its extrema,
where the agreement with (38) is indeed very good.

The double-well potential was modulated sinusoidally by varying the light intensities
in the two traps in counterphase. The sine was sampled in 40 steps of length τ/40 (where
τ = 2π/	 denotes the period of modulation) with a maximum change in intensity of ±16%.
From this intensity modulation we estimated the modulation amplitude of the double-well
potential in (35) to be A = (1.9 ± 0.5)kBT/x0 (cf (42)).
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5.3. Results and discussion

To compare our data with the simulations presented in section 4 we determined the residence
time distributions and hysteresis loops from the x-components of the measured trajectories.
This reduction to one dimension is justified a posteriori by the good agreement between
the results of the one-dimensional simulation and our experimental measurements. For the
residence time distributions we introduced the same thresholds (46) as in the simulations and
adopted the same definition for the area of the first peak (47)–(49).

Figure 5 shows the residence time distributions and hysteresis loops for five driving periods
τ = 10, 20, 50, 100 and 200 s. From an exponential fit to the residence time distribution for a
particle fluctuating in the unmodulated double-well potential we find the Kramers time for our
system to be (22±4) s, which agrees well with the structure of the residence time distributions
in figure 5. For τ = 50 s, corresponding roughly to twice the Kramers time, the residence
time distribution exhibits primarily one peak centred at tres = 25 s. For shorter modulation
periods τ we find multiple peaks at odd multiples of half the modulation period because the
particle cannot follow the potential modulation. For longer modulation periods we observe an
increasing number of jumps at short times because the probability for jumps from the deeper to
the shallower well increases with increasing modulation period. Comparing the experimental
residence time distributions in figure 5 to the simulated ones in figure 1 we find good qualitative
agreement.

The right-hand column in figure 5 shows the hysteresis loops corresponding to the
residence time distributions on the left-hand side. The average position 〈x(t)〉 entering the
hysteresis loops has been evaluated from the x-component of the experimentally observed
trajectories according to

〈x(t)〉 := 1

N

N∑
n=1

x(t + nτ ). (50)

Due to ergodicity reasons, the discrete-time average in (50) is indeed equivalent to the
ensemble-average 〈x(t)〉used in the theoretical sections in the limit N → ∞. In the experiment
the measurement time was 85 min for each τ leading to approximately N = 500 periods for
τ = 10 s and about N = 25 for τ = 200 s; the small number of periods available for τ = 200 s
explains the steplike structure in this hysteresis loop.

These experimental hysteresis loops are in close agreement with the simulated ones shown
in figure 1. To understand the shape of the hysteresis loops for the different modulation periods
τ we look first at three extreme situations.

(1) The modulation period is extremely short. In this case the particle feels a symmetric
average potential and 〈x(t)〉 will be zero for all values of cos(	t).

(2) The modulation period is approximately twice the system Kramers time. Here, the particle
follows the modulation and generally jumps twice per period. Typically the particle jumps
at the quarter modulation period when the potential changes from the symmetric state to
the maximally tilted one and remains in the deeper well until the potential is tilted towards
the other side. This results in a hysteresis loop of maximum area tilted with a positive
slope.

(3) The modulation period is much longer than the Kramers time (adiabatic limit). For an
infinitely long modulation period the particle samples the potential for each step in the
modulation and there is a unique 〈x(t)〉 corresponding to each value of cos(	t). In
this case the hysteresis loop degenerates into one single curve reaching from −x0 to x0.
This dependence of the hysteresis loops on the modulation period can be observed in
our experimental data. For τ = 10 s〈x(t)〉 remains about zero throughout the range of
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Figure 5. Experimental residence time distributions P(tres) (histograms) and hysteresis loops
(parametric plots of 〈x(t)〉 versus cos(	t) with t as parameter) for the same driving periods τ as
in figure 1. The measurement time was 85 min for each of the driving periods.

cos(	t). The small shift of the hysteresis loop for τ = 10 s is due to the particle spending
more time in the left potential well than the right one in this particular measurement. For
τ = 50 s the hysteresis loop has maximum area and is clearly tilted with a positive slope;
however, compared to the simulations, the experimental loop is slightly flattened. Finally,
for τ = 200 s the hysteresis loop shows an apparent tendency towards one single curve.

The dependence of the hysteresis loop areas and the first peaks in the residence time
distributions on modulation period τ can be estimated from figure 5. These quantities are
plotted in figure 6. Filled circles correspond to the area under the first peak of the residence
time distribution RES while open squares are the hysteresis loop area HLA determined by
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Figure 6. The experimental data as in figure 5. Filled circles: area under the first peak of
the residence time distribution RES from (47)–(49) versus driving period τ = 2π/	. Open
squares: hysteresis loop area HLA from (25) versus driving period τ = 2π/	, scaled so that RES
(50 s) = HLA (50 s).

interpolating the measured values linearly before integration. The HLA was scaled in such a
way that the peak values of the area under the first peak and the hysteresis loop area coincide,
RES(τ = 50 s) = HLA(τ = 50 s). It is apparent that both criteria agree very well for our
measurements as is the case for the simulations (cf figure 2). Both curves show a clear peak
at τ = 50 s, which we expect based on both the system Kramers time and the residence time
distributions and hysteresis loops in figure 5. Comparing the experimental curves with the
simulations in figure 2 the only apparent difference is in the areas for τ = 20 and 100 s, about
which one can only speculate at this point. Most likely the limited statistics of the experiment
plays a role while also the parameters used for the simulation may differ slightly from the true
values.

6. Summary and conclusions

The main theme of our present work is the comparison of different quantifiers for SR.
A first important result is represented by the relation (36) between three common such

quantifiers, namely signal-to-noise ratio, spectral power amplification, and hysteresis loop area
(HLA), which is valid for an extremely general class of systems under the influence of a weak,
harmonic driving. In fact, this is essentially the only mathematical relation between different
SR quantifiers known to us, in spite of the fact that the underlying qualitative picture is the
same for all of them.

In particular, for the most common quantifier in the context of bona fide SR, namely the
area under the first peak of the residence time distribution (RES), no quantitative relation with
any other SR quantifier has been reported in the literature we know, nor were we able to derive
such a relation even for very simple special models.

Therefore, the second main result of our present paper, namely the surprisingly good
agreement of the bona fide SR quantifiers HLA and RES in figures 2 and 6, represents a
challenging open problem for future theoretical studies.

The third central point of our present work is the very good quantitative agreement between
the simple theoretical model in section 4 and the experimental system from section 5.
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